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APPLICATION OF STATISTICAL FILTER THEORY TO THE OPTIMAL ESTIMA-
TION OF POSITION AND VELOCITY ON BOARD A CIRCUMLUNAR VEHICLE

By Geravp L. Surre, Srantey F. Scumior, and LeoxarDd A, McGer

SUMMARY

Concepts from statistical filter theory are applied
to the problem of in-flight determination of the
posttion and eelocity of a space wvehicle for the
purposes of mideourse guidance. The source of
information is assumed to be an arbitrary sequence
of measurements of any desired set of “observables”
(e.y., space angles), the measurements being cor-
rupted by additive errors so that the position and
velocity are never known perfectly. A state transition
approach ix employed which leads naturally to a com-
putational scheme that is readily implemented by a
digital computer. The schemne can be regarded as a
dynamical time-varying filter which welghts the
incoming observations in an optimal sense for use
. producing an up-to-date optimal estimate of
position and velocity.

The advantages of the scheme are (1) it provides
the best possible estimate (minimum error) based
upon ensemble statistics of injection conditions and
measurement errors; (2) it is extremely versatile,
not requiring adherence to a predetermined observa-
tion schedule or reference trajectory; and (3) the
computations are sufficiently simple to be practical
in an on-board com puter.

A digital computer simulation of the proposed
system s employed to demonstrate the feasibility of
an all on-board system and to llustrate the per-
Jormance attainable in a hypothetical physical
situation.

INTRODUCTION

One of the problem areas in research relating to
space flights is that of midcourse guidance. For
the manned circumlunar mission used as an
example in this report, the midcourse phase is
defined as all of the flight after boost and before
re-entry into the carth’s atmosphere for landing.

Studies of trajectories suitable for such a mission
indicate that small errors at injeetion produce
such large errors later along the trajectory (for
instance, near the moon) that guidance is gen-
erally necessary in the mideourse phase to insure
the success of the mission. The problem then is
to design a system that will perfori this funetion
to some specified degree of aceuracy with o mini-
mum expenditure of fuel. The mating of the
mideourse guidance system with other aspects of
the complete system is also an important part of
the design problem, but will not be considered in
this report.

The design of the guidance system is a closed-
loop control problem, the aspects of which may
be described as follows. First, it is necessary to
determine by means of data obtained from im-
perfect sensors (that is, instruments whose meas-
urements are subject to errors) as good an estimate
as possible of the position and velocity of the
vehicle.  This ean be called trajectory determina-
tion since the position and velocity vectors at any
time uniquely determine the trajectory in a frec-
fall situation. Then, on the basis of the best
estimate of the trajectory, end-point conditions
must be predicted (e.g., what would the estimated
perilune and perigee be if no corrective action
were taken).  Next, a guidance law must be used
which would make possible the caleulation of
desired corrective action to change the estimated
end-point  conditions to correspond to those
desired.  Finally, the indicated control action
must be implemented by applying thrust. To
close the loop, the applied thrust, acting through
the kinematics and geometry, influences the
observables which constitute the input to the
SENnsors,
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In this paper will be deseribed results of studies
ol the trajectory estintion portion of the control
system problem. The remuinder of the problem
with application to a specific  (hypothetical)
manned circumlunar mission, is treated in another
NASA paper (rvef. 1).

The deseription of the problem given above is
seen to he rather general.  Specifies are required
{0 begin a solution and these may be stated as
a set of ground rules, or conditions, as follows:

First, it is assumed that corrective maneuvers in
mideourse will be applied not continuously, but
intermittently and impulsively.  The justification
for this assumption is one of practicability; that is,
propulsive devices presently at the highest state
of development are relatively high-thrust rocket
engines.  To be employed most efficiently i a
situation where relatively small corrective maneu-
vers are envisioned, such rocket engines must he
turned on only briefly and at widely separated
time intervals.  The result of such a mode of

peration is that most of the time the control loop
s not closed, and trajectory estimation can be
treated separately from the remainder of the
guidance problem except during the brief periods
of control action.

The second condition is that the trajectory
estimation svstem must constitute a completely
on-hoard operation; that is, observational data
will be obtained by on-board sensors (e.g., optical
devices for measuring space angles) and all tra-
jeetory enleulations will be performed by an on-
board computer.  The justifieation for this re-
quircment is that ina manned mission an on-hoard
svstem provides added safety for the erew of the
vehicele by eliminating dependence upon the ecarth-
vehiele communication link.  This does not mean
that the mission will be totally dependent upon
the on-hoard svstem, of course, and the question of
whether or not the on-board system will be the
primary system need not be considered at this
time. The most significant consequence of this
condition is that the on-board system must be in
itself nccurate enough to satisfy mission objectives
and at the same time simple o that it can be
relinble and light in weight.

The problem is to find the best estimate of the
trajectory from a sequence of imperfect observa-
tions ol cerfain arbitrary space angles made
repetitiously in any pattern deemed  desirable.
This is basically a filtering problet and is attacked

in the report by meuns of statistical filter theory.
First, the theoretieal developient of the optimal
{rajectory estimation system is given.  Then it is
shown how such a scheme might be implemented
in an actual space vehicle.  Finally, the results of
a simulation study are presented to illustrate the
potential usefulness of such a system in an on-
hoard navigation scheme.

SYMBOLS
Lower case English letters are used for vectors
(column matrices), except for », 7, p;upper case
letters generally denote multiple-column matrices.

D submatrix in M related to n

F perturbation matrix

Ir submatrix in M relating m to «

7 unit matrix

K K* weighting matrix in optimal filter

m message, Ilr

A matrix relating y to z*

n observational error vector

D magnitude of the predicted devia-
tion from reference at perilune

J magnitudeof theerror in prediction
of position at perilune

I covariance matrir of ,

‘) covarinnee matrix of observational
error, u

r magnitude of position deviation
from reference

F magnitude of error in estimating
position

I covariance matrix of deviation
from reference, »

I, radius ol earth

t time

. white noise

v magnitude of velocity deviation
[rom reference

7 magnitude ol error in estimating
veloeity

£ deviation from relerence

¥ estimate of «

ot error in estimating ., «-r

£* generalized state variable, includ-
ing » and »

NV, Z position coordinates in geocentric
reference frame

Y obscrvation or measurement of m

o, declination angle of earth as seen

from vehicle
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8. right ascension angle of earth as
seen from vehicle

Ye half the earth-subtended angle as
seen from vehicle

A indicates “increments of”” as in
Af, AA

gy standard deviation of a single ob-
servational error

Or; standard deviation of random
variable r.(¢,)

@, element of &

b, d* transition matrix

NOTATION CONVENTIONS

()t inverse of matrix ( )

(H" transpose of matrix ()

() submatrix of ()

o] expected value of [ ], sometimes
used without the brackets

SUBSCRIPTS

1, 2, ., 6 numbered state variables

0 at injection

¢ earth

k at kth observation

m moon

n related to observation errors, n

8 sun

ANALYSIS

PROBLEM FORMULATION

The approach employed in solving the problem
of trajectory determination is a specialization of
some concepts of statistical filter theory proposed
by R. E. Kalman (ref. 2). This approach utilizes
the state transition formulation which in the
present problem may be summarized as follows:
Given the equations of motion for the space ve-
hicle, as developed in appendix A, the trajectory
of the vehicle can be specified uniquely from a
knowledge at any time ol the three components
of the vehicle’s position vector and three compo-
nents of its velocity veetor in an orthogonal refer-
ence frame.  These six variables are defined as the
state vector which is a continuous time funection
generated by integration of the equations of mo-
tion with appropriate initial conditions.  Because
the initial conditions are not known precisely, the
present state 1s also not known, and it is the fune-
tion of the trajectory determination system to
estimate the state on the basis of observations

made by on-board instruments.  The svstem is

then regarded as a multidimensional filter, its in-
put being a time sequence of observations of
variables related to the state, corrupted by addi-
tive errors. Its output is the estimate of the state
at present timme, and the filter 1s to be designed to
make this an optimal estimate in the sense of
minimizing some function of the estimation error.

In the filter design, it is convenient to think of
the input to the trajectory determination system
as composed of a “message’” plus “noise.” The
message in this case is a set of observables (e.g.,
space angles) which are a consequence of the
physical situation as defined by the state. The
message-generating process can then be repre-
sented by an integration ol the equations of tno-
tion to obtain the state, followed by computation
of the observables, as illustrated in sketeh (a).

Compu;otion Message
[

Equations | State
of motion

Injection
conditions

observables

sketeh (a) —Message-generating process.

This message process is, ol course, nonlinear.
To employ techniques from linear theory, suppose
that  the nonlinear equations of motion are
lincarized.  The proeedure used is deseribed in
appendix B and is, in effect, a Taylor series
expansion about a reference trajectory, retaining
only the first-order terms in the expansion.
The state can then be expressed in the form of a
deviation state vector, x(f), which is the solution
of u set of linear time-varying differential equa-
tions.  In standard matrix form these equations
may be written as

r(y=1F(t)r(t) (1)

which is  called the  perturbation  equation.
Alternatively, equation (1) can be written in the
form

r(t- AN =d(t A Hae(t) (2)

where state transition concepts are emphasized.
The mutrix ®(F+Af; £) 15 the transition matrix
associated with the linearized equation ol motion
and desceribes how the state changes from time ¢
to time t+Af. 1t has the properties that ®(f; 1) 1s
the unit matrix, 7, and &(,; () =371t 1.).

Note that no forcing function appears in
equations (1) and (2). This is beeause a free-fall
condition, with negligible disturbing forees, 1s
postulated for the vehicle trajectory.
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In the linearization process, the equations that
relate the obscervables to the state variables are
also linearized as shown in appendix €. The
message is then expressed in terms of deviations
from a reference, and is linearly related to the
deviation state:

m ) =TT{)rt) (3)

The message process can now be represented by
the linear system illustrated in sketeh (b).

Injection
conditions

Sketeh (b). —Linearized message proeess.

The netual injection conditions, of course, are
not known, but it is assumed that they can be
desceribed probabilistically at least up to second-
order statistics.  Thus, the injeetion conditions
are regarded as a veetor-valued random variable.
When expressed in terms ol deviation from ex-
peeted (or ideal) injeetion conditions, this random
variable has zero mean.  If the linear model of the
Mmessnge process 1s assuimed to be valid, the state
and the message are then also random variables
with  zero mean. The second-order statisties
assumed are the covarianee mulrix ol injection
errors defined as follows:

cov Lo, |=Flrell=1,

The covariance matrix of trajectory deviations is
then given, by means of equation (2), as

cov | {(8), ()= e (6) e ()]

bt t PP L)
Furthermore, by use ol equation (3),
cov | m (0, m (O HHOD ) Pt t )T ()

Thus, the statistics of the message are expressed
in terms of the statisties of injection conditions
and the linear model of the message-generating
process,

A weatment similar to (hat accorded the mes-
sage statisties is employed for the instrument
ervors.  However, without assuming a particular
instrumentationsystetn, itisnot possible to heasspe-
cifie as in the case of the message process. Neverthe-

AERONAUTICS AND SPACE ADMINISTRATION

less, the assumption, which is standard in engi-
neering applications of statistical filter theory, is
that these errors can be represented as the output,
n(l), of a dynamic system excited by an inde-
pendent (vector-valued) Gaussian randont process,
u, (). The instrument errors are regarded col-
leetively as a vector, #(#), having as many com-
ponents as the individual sources of error con-
siddered.  The error, n(f), then ean be represented
by the equation

(AN =D, (t+At; in(ty-+u' (1-HAL ) (4

where

t+ At

Il'(;f%.ﬁ?.f):[ P, (1-+-Af;7)u, (r)dr

S

Here w,(t) is “white noise,” and @, is the transition
matrix of the error process. The statistical prop-
erties of n(t) are expressed in terms of @, and the
covariance mutrices,

N=cov | n(t,), nt ) l=Kn(t,)n"(t,)]
Q. (t)=cov [u, (), w, ()= E[u,(t)ui(t)]

The mean values of n(f,) and wu,{#), henee also of
n(@), are assumed zero.  (This represents no loss
in generality sinee nonzero means would normally
be ealibrated out of the on-board instruments.)

The linear equations (2) and (4) may now be
combined in the form

R AN =DX(EA-AL 1) () Fult AL ) ()

where #* is a generalized state veetor including
both the vehiele state and instrument error com-
ponents, and ®* includes both & and ¢,. The
statistical properties of 2* are thus expressed in
terms of ®* and the covariance matrices 72, N,
and Q*(@ At 1), where @* 1= defined as

o 00 3
o Q

[ (_(])i)

O (1At 1) = f &, (f+ A7)

S

Q,J(Ti)‘bzv(f A Ty

To complete the formulation of the problem, it
!

is necessary 1o obtain an expression for the ob-

servations by approprintely combining equations

(3) and (4).

Tt additive instrument errors are as-
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stuted, the observations will be the sum of two
random processes, which constitute another ran-
dom process having values only at times ¢, when
observations are made. Thus, the observation,
termed y({#), 1s a linear combination of the gener-
alized state variables, ns follows:

Yyt =m(t) +D(t)n(ty)
= (t)a(t)+D(tn(t)
=M(t,)r*(t,) (7)

It is noted that sinee «* has zero mean, so does .
Sinee each observation may be perturbed by sev-
eral different sources of noise (such as ealibration
errors, readout errors, tracking crrors, ete)) the
matrix /) is provided to combine the various noise
sources approprintely into a single observation
error.  Thus # may be of larger (or smaller)
dimension than m.

THEORY OF THE OPTIMAL FILTER

We now come to the principal problem, which
may be stated as follows: Given a set of observed
values of the message, 3@, y(@), . . (),
find & “best’ estimate F*() of z*(#), where the
judgment of what ix “best” (i.e., the optimality
criterion) is vet to be specified.

To arrive at a reasonuable optimality eriterion, it
s natural to assign some penalty (e, loss) for
incorrect estimates.  If the error in estimate is
defined as F*@) =r*(t)—2*(#), it is clear that this
loss must be positive for every nonzero value of
*(1).  Among the more ohvious of such loss fune-
tions is the scalar product F*7F*. This is the
vector equivalent of the fumiliar squared-error
eriterion of one-dimensional filter problems.  Al-
though it is possible to raise some argnments
about the appropriateness of this criterion, the
general form secins correct because 1t implies
minimization of fuel requirements for mideourse
corrections. The implication of fuel minimization
is explained by noting that the error in determina-
tion of the proper veloeity correction at any time ¢
1z for all practical purposes a linear function of
Z*@®). Thus,minimizing 7*7 (1) 7*(#) also minimizes
fuel waste for a correction made at time £, The
mathematieal convenience of this eriterion is per-
suasive, and furthermore it gives an estimation
formula that is correct for a somewhat more
general eriterion (refs. 2 and 3).

~

It is next assumed that the optimal estimate
will be restricted to be a linear function of the
observations; that is, the best estimate of the form

. k
=37 Ay (N)

i=

is to be obtained.!  Although this assumption is
i keeping with the linear philosophy employed
throughout this development, it may be objected
that this is too restrictive.  However, it should be
realized that for an on-board system the utmost
simplicity 1s important, and a linear estimating
procedure probably is the simplest.  Another way
of stating this argument is to say that there is
sonie loss or penalty associated with computer
complexity, and if this were incorporated in the
optimality eriterion the expected result should be
to favor a linear system.,

Under the above assumptions it is clear the
optimal estimator may be regarded as a linear
filter whose input is the actually occurring se-
quenee ol observations.  The next step in the
development of the theory is to view this filter
from the state transition point of view; that is, the
estimation computations are to be considered as
proceeding in real time, utilizing only the previous
estimate and the latest observations at any one
time.  With the assumption that at the time of the
kth observation the estimate based on the £—1
previous observations has been computed, it is
readily dedueed that the new estimate based on &
observations must be of the lincar form

PR B (s L) *(E )
+K*(tk)[y(tk)_‘]l({/:)q)*(tk; (. 1)}*(1/;*1” (9)

It is noted here that the quantity ®* (¢t )2* (1))
is the estimate of 2*(#) based on the first k—1
observations.  The quantity in brackets is then
the diflerence between the &th observation, y{t,),
and the estimated value of the vector observable
ab time ¢, The matrix K*(¢,) weights the resid-
ual (quantity in brackets) to produce an increment
to be added to the estimate.  Thus, the form of
the estimation equation is perfectly natural, for
il the current observation should happen to agree

VI it n() are Gaussian, the unrestricted eptimal estimate is of the
lincar form (4. I other words, only when the system inpuis are not Guans-
sinnt ean the estimate be improved by a nonlinear estimator, Thus, the
restriction to linear estimation coald be replaced by the assumplion of
Guussian inputs if o desived, (See refs, 2 and 3.0
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perfectly with the estimated observable, the fact
that an observation took place should have no
effect on the estimate.

Equation (9) can be represented in block dia-
gram form as shown in sketch (c), where it is

Sketeh (e)

seen that realization of the optimal filter requires
only a model of the +*(f) gencrating system and
the weighting matrix K*(#,). Thus, the optimal
properties of the filter depend upon the proper
selection of K*(t,).

To obtain an equation whereby K*(¢;) may be
computed, the principle of orthogonal projection
in a multidimensional space is employed. Kalman
shows (ref. 2) that for the norm-squared error
criterion and linear filter restriction, the optimal
estimate 7* is the orthogonul projection of #* upon
a linear mantilold, or vector space, formed by the
set of all linear combinations of the random vari-
ables in the set of observations, y(¢,), . . ., y(f).
The result is that the error in estimate, F*(#,), is
orthogonal to the estimute £*(t;). This principle
is used in reference 2 to show that the weighting
matrix is given by the expression

R*(t)— P*(t) MO MO P* o M) (10)

where P*(t,) is the covariance matrix of the esti-
mation error at tiume f, based on the previous
k—1 observations. The matrix 7% is in turn given
by the recursion relation

I)*(U—:l)*"p(f“x; tk'>[[)*(tk)——K*(tk)“[(fk)lj*({k)]
(I’T(fkwi 1k)+(x)*({ki-h 1) (re)

Thus, the computation of the optimal estimate is
seen to be o straightforward step-by-step proce-
dure. To begin the computations some starting
values of 7* and P* are required.  These might
be, for instance, at initial estimate of injection
conditions and noise, and the covariance matrices

N, and 22, as obtained from some source such us
the boost guidance systen.

It should be noted that the estinte 7* includes
both an estimate of the vehicle state, »r, and an
estitmate of the instrument error, .

SIMPLIFICATION FOR A SPECIAL CASE

In this section a specialized situation will be
considered, described as follows:

(1) Each observation consists of a set of space
angles measured simultaneously by the on-board
instrumentation system.

2) The instrument errors are uncorrelated
from one observation time to the next (although
there may be correlation between the errors in
the separate components of an individual obser-
vation),

The first assumption above is entirely arbitrary,
introduced so that the discussion of system per-
formance can be more specific. The second
asstmption is not unrealistic in that observations
on board the vehicle ure likely to be well sepurated
in time, particularly if the number of obhservations
required for navigation is not large.

It is readily shown with the second assumption
that the implementation of the estimate of in-
strument errors ¢an be omitted from the optimal
filter and the computations thereby markedly
simplified. The development of this simplification
is given in appendix D, The major effect is to
reduce the order of the matrices involved in the
ealeulations, since only I, the covariance matrix
of r (designated P), and the weighting matrix
associnted with 7 (designated K) need be com-
puted. The equations to he solved are:

)=t b )T ()
'T'["(fl;)ly(fk)—'[[(’L—)(b(f},:fk 1)-;({/.-4)‘ (12)

Kt =PI ) L) PO () + Q)]

(13)
Pt )—o(an Ik)[])(,[l;)

— K@) () P17 (00 1) (14)

The )t is presumed known a priort as deseribed
in appendix D Tt is noted that only the model of
the messuge process and not of the mstrument
error process is required in the optimal filter.

For purposes of computation which will be ex-
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plained later, it is convenient to represent equa-
tion (14) in the form of two operations:

P(t) =D (P ()T (L 1) (15)
Pt =P)— K () P(t) (16)

It is noted that equation (16) represents the
manner in which 72 changes at time {; as a result
of the information contained in the observation,
and equation (15) represents the way tn which it
changes as a result of transition along the trajec-
tory.

These equations will now be specialized to the
case ol observations consisting of three angles.
These angles may be, for instance, the subtended
angle of the carth and the right ascension and
declination of the earth center as viewed from the
vehicle, as assumed in the simulation studies pre-
sented later.  Since the angles depend only on
vehicle position and not on veloeity, the 7 matrix
may be in this case partitioned in the form

=1, 0

where 11, 1s a 3>(3 matrix of partial derivatives
of the three angles with respect to the XV, 72
coordinates of vehicle position, and 0 is a 33
null matrix, I /2 is likewise partitioned in the

form
. g ];21'
P—= P I :I

where the submatrices are all 3x3%s, equation
{(13) ean he written in the form

1{{’,‘] LD T 0 (17)

The computation of K is thus seen to be relatively
simple, involving only the Inversion and multipli-
cation ol 333 matrices.

IMPLEMENTATION OF THE
ESTIMATION EQUATIONS

Some comments regarding the implementation
of the optimal filter are desirable to clarify the
manner in which the caleulutions might be per-
formed in an on-board digital computer. The
simplified system desceribed in the last section will
he considered.

634901 - 62

First of all, 1t is clear from equation (12) that
the model of the m(#) generating svstem (the mes-
suge process) emploved in the optimal filter need
not be the linearized version but could be a more
accurate (generally nonlinear) representation-—in
other words, the equations of motion themselves.
The computations would then not be in terms of
deviation quantities but the original variables. A
block diagram representation ol the computation
would then appear as shown in sketeh (d). The
input 18 the actual observation from which the
latest estimate of the vector observable 1s sub-

Estimated state

Integration
of equations
of motion

Observations

Catculotior
3 of estmated
observabies

Updated previous estimate

Sketeh (d)

tracted.  The difference is then multiplied by the
matrix A, Just as before, to increment the esti-
mate. The new estimate then 18 a new set of
starting conditions used for integration ol the
model equations until the time of the next ob-
servation.

Computation of /2 and hence K still requires
the linearization approach because of the manner
in which the &, 71, and ¢ muatrices appear in
equations (13) and (14). Since ) represents the
statisties of the errors in the measuring instru-
ments, which are presumably known a priort, it
secems reasonable that this would be a stored
matrix.  Likewise, ® and 17 could theoretically
be stored since theyv represent the equations of
motion linearized about the reference trajectory
whieh 1s known before launch.  However, in prac-
tice it might be awkward to store these in an
asily utilized form because of the arbitrariness
in the times at which observations are made.
Thus. it appears simpler to arrange to compute
these watrices in the vehiele. Tt is seen that these
computations need be performed only at times
observations are made, the values at other times
having no meaning for the problem.

Another reason for computing /7 and & in the
vehicle is that this makes it possible to linearize
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around the estimated rather than the reference
trajectory.  This is clearly the correct procedure
since /2 has to do with the difference between the
estimate and the true state, and the estimate is
on the average closer to the true state than is the
reference.  Errors arising from the linearization
assumptions are thereby minimized. It is noted
that if this procedure is used, very large deviations
from the reference (such as would oceur i an
abort situation for instance) would not jeopardize
the accuracy of the trajectory determination
scheme as long as the estimate itsell was always
reasonably good.

One possible method of computing the transition
matrix required in equation (14) is given in
appendix E.  This requires a sixfold simultaneous
integration of the perturbation equation (1),
starting over again at the time of each observation.
To linearize around the estimated state, it is
necessary that the /' matrix of the perturbation
equation be computed from 2. Thus, the
integration of the equations of motion gives x(f)
in the interval # << f,. Simultanecously, *(#)
ix used to compute F@), and F(t) is employed to
obtain ®&(; ¢,_,).

The operation of the entire system is represented
in figure 1, which may be explained as follows:
When an observation has been made and is to be
processed, integration of the equations of motion
s initinted (D> (by any suitable integration
routine) beginuing with the estimate of position
and veloeity computed at the last observation.
Simultaneously, scheme &, deseribed in the pre-
vious paragraph, is used to compute the transition
matrix from the last observation 3. This proc-
ess continues until computer time equals the time
of the observation. The integration is then
stopped, () is computed @ [rom equation (15),
and 7{(#.) is computed & from the last estimate of
the state.  The matrix A is then computed ®).
The estimated angles are also computed @ [rom
the last estimate of the state just prior to the
observation. These are subtracted ® from the
actually observed angles, the difference is mul-
tiplied by K(#) ®, and the estinnte is ineremented
@ by this amount to produce the new estimate of
the state. The 22 matrix is then computed @
from equation (16), reflecting the change in 2

> Cireled numbers ddentify computer operations ilustrated in figure 1.
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Fiavre 1. Bloek diagram  of (rajectory  estimation

systent.,

due to the observation, and 7 is stored. The
delay unit @@ represents the storage of (1)
until the time of the next observation when it is
needed to compute P(ty). The computation
evele having thus been completed, the computer
simply waits, either in standby or ofl condition,
until the next observation is to be processed.

In regard to computer speed requirements for
the foregoing computations, it is, of course,
necessary that the time required to complete the
computation eyele be less, on the average, than
the time interval between successive observations.
Tf relatively few observations are necessary for
satisfactory navigation, this consideration is of
little consequence since times on the order of
minutes or even hours would be available for
each eyele. What is more critical is the fact
that a long time delay between making an ob-
servation and obtaining the improved estimate
would likely be undesirable for a number of
reasons.  Even so, a relatively modest computer
speed would appear adequate. It may be noted
that with widely spaced observations the computer
would actually be off most of the time, resulting
in a considerable saving in power consumption
as compared to running continuously.
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RESULTS OF SIMULATION STUDY
DESCRIPTION OF THE SIMULATION PROGRAM

In this section the results of a digital computer
study are presented to illustrate the performance
of a trajectory determination scheme ol the type
which has been described. A lunar circumnavi-
gation mission is assumed, with a nominal tra-
jectory such that the vehicle achieves a perilune
altitude of 4766 km in 3.28 days of flight and
returns to a vacuum perigee altitude of 72 km.

50000 6 Days !
(V 5 Days |
3,
km O

i
2 Days ;
-50000 ' Day !

0 100000 200000 300000

km

Fiavre 2. Reference trajectory for eireumlunar mission.

This trajectory is shown in figure 2. A dingonal
covariance matrix of injection errors i1s assumed:

o’ 0 0 0 0 0

1
0 ol 0 0 0 0

0 0 o’ 0 0 0

Pt,) =
o 0 0 g 0 0
o 0 0 0 o’ 0

o0 0 0 0 g

The observation schedule assuted is deseribed
as follows: Observations of three angles: -carth-
subtended angle and two angles which describe
the direction ol the vehicle-earth line —are made
with optical instruments on bourd the vehicle.
The physical situation is described in appendix C.
The first measurement is made % hour alter
injection, and subsequent observations are spaced
at 6-minute intervals until a total of 20 observa-
tions has been completed.

It is assumed that additive notse having zero
mean and a diagonal covariance matrix,

ot 0 0

Q=0 ot 0

A
=
_
=
q

contaminates these measurements, The noise in
each angular measurement has the same Gaussian
distribution whieh does not vary with time.
Also, there is no correlation between the noise
samples at different observation times,

The average, or ensemble, performance ol the
system can be seen to be given by the variance
equations, (15) and (16). The solution of these
equations obviously depends upon the initial
condition 1°(¢,), the matrix parameters ¢, I/, and
&, and the spacing of observations. The choice
ol nominal trajectory, starting time, and observa-
tion schedule, as described

above, essentially

removes [ and & as parameters. Thus, we are
concerned with determining the effects of varying
P@,) and @. From equation (13) it can be seen
that the time constant or rate of decay of /°(f)
depends upon the relative magnitudes of ¢ and
P(t,); that is, if ¢ and ’(t,) were both increased
by the same scale factor the shape ol the P(1)
curve  would be unchanged. Tts magnitude,
however, would be increased in proportion to
the increase in °(1,).
is equivalent to a change in ) except lor scale
Therefore, to determine the nature of

Thus, a change in °(t,)

factor.
the variation due to varying /°(f,) and ) we need
ary only one of these.  lIlere we choose to vary
the instrumentation noise, )

The problem as stated was programmed for a
digital computer in the form shown in figure 1,
with the addition of a computation of the covari-
from the nominal

ance matrix of devintions

trajectory,
RO)=a(; t.)P(t,)@"(1; 1) (18)

and a4 computation of the estimate and error in
estimate of position at nominal perilune using
linear prediction.  Together these computations
make possible an assessment of the average, or
statistical, performance ol the system. At the
same time, with specific randomly selected injec-
tion errors and noise as inputs, each computer
run gives u specific member of the ensemble of
actual trajectories and estimates thereof.

For convenience in presentation, the data are
given only in terms ol the magnitudes of position

and velocity deviations.  Thus, the actual trajec-
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tory resulting from the specifie injection conditions
emploved is represented by the quantities

Pyt b g
(19)
=y R g

which are the magnitudes of the deviations in
position and veloeity from the nominal trajectory.
Similarly, the error in estimate 7 for a specifie run
is given In terms ol its position and veloeity
components:

PR R
‘ ' (20)

Py }42'* F2 J~'¢'.2J
~ A . . . .
where Fi==r,—r;.  Likewise, In presenting ensem-
ble results, we plot rms position and velocity
deviations.  From the six terms in the principal
dingonal of the 2 matrix we obtain

Prms Ty I'JJ‘I2 + [’:-r‘.’g+ [411‘33
(21)
Feme— s Bt it Frt )

and similarly, from the P2 matrix we obtain the
rms position and veloeity estimation errors:

P NP EF 2 F

7 rms=— ¥ ['1-;4" + [LV;'.',.',”}’ [ﬂ‘}nz J

A Fortran program designed for use on the 1BM
704 digital computer was written to perform the
computations deseribed above.  The storage space
used by the program {(including provisions for a
number of other computational features not used
in the present study) 18 about 13,000 words.
Computation time on the IBM 704 is roughly 15
minutes for the 2%-hour flights simulated in the
study.
PERFORMANCE OF SYSTEM FOR DIFFERENT OBSERVATION
ERROR MAGNITUDES

To illustrate the effeet of varving the magnitude
of the observation errors as defined by ¢, four
computer runs were obtained simulating an obser-
vation routine consisting of a total of 20 observa-
tions spuced at 6-minute intervals beginning %
hour after injection.

The statistical descriptions of the inputs were
specitied as follows: (1) For ¢/, ¢, was taken to be
5, 20, 50, and 200 see are, respeetively, in each of

AERONAUTICS AND SPACE ADMINISTRATION

the four runs.  (2) For P(1,), 05, 0z, and 0z were
taken to be 1 km, and oz, o-, and oz, were taken
to be 1 mjsee, the same for all runs.

The specific injection conditions and observation
errors were chosen randomly in accordance with
the assumed statisties as follows: (1) Observation
errors were generated by oa Guussian random
number computation and scaled for use in each
run according to the o, employved. The time
histories of the sample emploved are shown in
figure 3, and were the same for all runs exeept

2

SIS
(@]

-2

O 2 4 6 8 0 12 14 16 18 20
Observation number

Fraure 3. -Time histories of observation errors axsumed.,

for scale fuctor. (2) The injection crrors were
seleeted at random from a table of Gaussian
random numbers, The same
for each run:

alues were used

2 (8,)=0.495 km

22(t,) = —0.886 km
7ra(t,)=—1.001 km
rilt,)=0281 m:see
.t} = 1.999 m/see

Figure 4 shows, for the four different observa-
tion error levels, the errors in estimating position
and veloeity as a function ol time.  The irregu-
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larities in the estimate as a funetion of time are
due to the noise and are of the same character
for each of the runs hecause the same noise
sample (except for scale) was used in each case.
The actual deviations from the nominal trajectory
are also shown in figure 4 for comparison with
the estimation errors. It should be noted that
if no observations were made, or equivalently
if the system were designed for infinite measure-
ment errors, the “best estimate’” would be the

~

V.m/sec 4

5
L | s i 1 j
6] Q02 004 006 0.08 alo
Time, days

Ficvee 4 --Time histories of the estimation errors for

various magnitudes of observation error.

position, 7 km

ES
T

Error in estimote of

o) i | ) 1 L 1 " | L ]

~No noise

Error in estimate of
velocity, ¥, m/sec
[p%]

; ] ! | L | L ] L |
] 002 004 006 008 010
Time, days

Ficure 5. -Time histories of the estimation errors for
virious observation error samples; o ,-= 20 see are.

nominal trajectory itsell, and the error in estimate
would he the actual deviations from nominal,
given by the quantities » and . The differences
between » and 7, » and %, thus represent the
improvement in knowledge of the trajectory due
to the observations.

Figure 5 shows several time histories of the
system performance with the same injection errors
in each case, but with different noise time histories,
a,—20 sce are. A run made with no noise is
also shown for comparison, to give an indication
of how much the estimate is perturbed by the
noise.

The first portions of the 7 and 7 curves represent
the errors in estimate prior to the first observation.
As previously explained, these are simply the
deviations from the nominal trajectory due to
injeetion errors, which are the same lor all runs.
[t is seen that the estimation error is generally
larger when noise is present than when it is not.
This is a result of presenting the estimation
errors in ferms of the magnitude quantities 7 and 7.
[T the ervor components were shown separately
(e.o., ry, I etel), the no-noise results would tend
to represent the average of the several noise time
histories.

Figure 6 shows the ensemble average estimation
errors, obtained from the 7> matrix. The average
deviations [rom the nominal trajectory, run, and
Prmss Obtained from the /2 matrix, ave also plotted
for comparison. The average improvement in
knowledge of the trajectory is represented by the
differences between roe and " e, s and P,
which are seen to be always positive and greatest
when the noise is the least.  Comparison of figures
4, 5, and 6 indicates that the individual perform-
ances shown in figures 4 and 5 are reasonable
members of the ensembles shown in figure 6.

The performance ol the system in predicting
the error at perilune is shown in figure 7 for the
four different noise levels. The actual estimate
of the deviation from reference, designated 5, and
the root-mean-square error in the estimute, D emsy
are plotted as a function of time. The irregular
character of the J curves is again due to the noise.
It is seen that ;i tends to build up in a roughly
exponential manner toward the actual miss (4528
km), the time constant being greater for the larger
noise magnitude, reflecting the poorer confidence
in the mensurements which exists when the noise
1s large.
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Ficere  6.—Root-mean-square  extimation  crrors  for

various standard deviations of observation errors.

In figure 8 a different method of presenting the
estimation error data is employed to illustrate
the fact that the estimate is better in some direc-
tions than in others. This act is obscured n the
plots of figure 6 but is significant in determining the
character of the information that the assumed set
ol observations contributes to the estimate. It
should be noted that the elements of the 72 matrix
deseribe the shape, size, and orientation of a time-
varving estimation error ellipsoid. This ellipsoid
may be considered as centered on the current
estimate of the trajectory. The intersection of
this ellipsoid with the equatorial plane is shown
in figure 8§ for the cuse of ¢,=20 sec are. The
equivalent ellipse obtained from the £ matrix,
which illustrates the statisties of deviations from
the reference trajectory, is also shown for com-
parison.  One interesting point to be noted is that
the miajor axis of the error ellipse tends to be
oriented along the vehicle-earth line. The impli-
sation is that the specified observations give less
informution regarding the position along this line
than in any other direction. Since the distance
from the earth is obtained principally from the
measurement of subtended earth angle, this indi-
cates that the information available from this
angle is relatively poor.
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Frgure 7.—Performance of the system in estimating the
miss at nominal perilune for various magnitudes of
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EFFECT OF YARYING THE OBSERVATION RATE

[T the number of observations made during
given period of time is increased, an improvement
in the knowledge of the trajectory should be
expected.  To illustrate this effect, a run was
made using the same initial conditions and noise
as inoa previous run with o,=20 sec are, with
observations starting at the same time but spaced
3 minutes apart. Thus, during the same 2-hour
period 39 observations were completed.  Figure 9

6
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Fravere 9. Root-mean-square estimation errors for two

different observation rates.

compares the performance for this case with that
for 20 observations at 6-minute intervals,  [{ is
seen that the inereased observation rate produces

a reduction of roughly 20 percent in —
about 17 percent in 7

rmse
THE EFFECT OF BIAS ERRORS

The assumption that the instrumentation noise
samples at different observation times are statis-
tically independent is reasonable for certain sources
ol noise. However, it is expected that generally
there will exist In any instrumentation scheme
additional errors which are systematic in nature
(e.g., telescope boresight errors), and thus are
definitely not independent from one ohservation
to another. Such errors might also be termed bias
errors since they tend to remuin the sume over o
long period of time. To give some insight into the
manner in which these errors affect the perform-

ance of the system, which is not optimized for
such errors, three additional computer runs were
made, each with a constant bias error of +5 sec
are added to one of the three angles being measured
in addition to the random noise (¢,=20 see are)
previously assumed. The results of these runs are
shown in figure 10, together with the corresponding
no-bias run repeated from figure 3 for comparison.

¥, m/sec 2

o] coe 004 006 oce o110
Time, doys

Frovre 100 Time histories of the errors in estimate
with 5 sec are uncompensuied bias on a., 3o, 7. o, 20

see are.

It is seen that bias error on a, and g, (the declina-
tion and right ascension of the earth, respectively)
has virtually no effect on 7 and 7 but that the same
bius on v, (the earth-subtended angle) produces a
substantial effect, increasing 7 and & by roughly
third.  The conclusion to be drawn is that the
svstem is quite a bit more sensitive to bias errors
on v, than on «, and 8,, although this cannot be
stated as a general conclusion sinee there is an
obvious dependence upon the geometry of the
particular situation simulated.  Nevertheless, it
can be stated that bins errors of certain (vpes
should be investigated carefully in the design of a
guidance system. I .necessary, such bias errors
can be treated as additional state variables and
estimated along with the others.  The theory
presented is sufficiently general to allow this, pro-
vided suitable statistical descriptions of the crrors
:un be supplied.
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COMPARISON WITH SOME OTHER TRAJECTORY
ESTIMATION METHODS

BAYES ESTIMATE

The most widely recognized trajectory estima-
tion techuique, and one which is in actual use by
Jet Propulsion Laboratory (ref. 4) and others, 18
based on Baves estimation®  This is an optimal
method which, sinee it utilizes the same optimality
criterion as in the filter theory approach, one
should suspect should give the sume results.
Such is not imnediately apparent in viewing the
two formulutions.

The Baves estimation approach is developed
from decision theory concepts, the estimate heing
based upon maximizing a multivariate a pos-
teriori probubility density [unetion.  The filter
theory approach uses the idea ol orthogonal
projection i a multidimensional space (rel. 2).
A eareful study of these ideas shows that they are
basically the same. The two approuches differ
then only (1) in the munner of introducing such
matters as linearizing a basieally nonlincar proe-
css? oand assuming  Gaussian distributions, and
(2) in the form of the estimation equations.  The
Baves estitmation equations are generally expressed
in a forn sueh that the estimate 2(¢) is obtained by
operating on the entire set of & obscrvations ad
onee, whereas in the filter formulation the estima-
tion procedure is a sequential operation on the
observations taken one at a time in the order of
their occurrence,  One way of demonstrating the
equivalence of the two approaches then is to
develop recursion relations for the Bayes estina-
tion equations so that the mode of operation is the
same as that emploved in the filter approach.
This has been done it appendix F for the restrieted
case of uncorrelated observations, where it is
shown that the equations are the same and hencee
the methods equivalent. A rigorous general treat-
ment is not attempted, the purpose being pri-
marily to verify what common sense already
indieates, namely, that there cannot be two
different optimal methods having the same opti-
mality criterion and basic assumptions,

3 his method has been ealled maximum likelibood estimution by I 1% L
although technically speaking it should bhe termed “Bayes estimation.””
The distinetion in the present context is that the Bayes estimate utilizes the
a priori stalistics of injection errors and the maxinuim likelihood estimate
does not.  See referenees 5, 6, und 7 for more detailed definitions,

4 The difference in the manner in which linearization is employed in the
two methods should result inoa slight numerical difference in the answers
obtained. Towever, this is o practical rather than a theoretical considera-
tion, the two methods still being fundamentally identieal,

The two methods then should not be called by
different Bayes  estimation.
The equutions whereby the estimate is obtained

names--hoth  are

by operating upon the entire set of observations
comprise the elosed-form solution of the Bayes
estimation problem.  In contrast, the equations
developed from filter theory are the difference
equations corresponding to the closed-form solu-
tion; the estimate in this ease is obtained by a
process analogous to solution of differential equa-
tions by numerieal integration,

The question of which of these methods of
solution is superior is not casily answered since it
depends on the application intended. A point
in favor of using the closed solution is that if the
solution at only one point is desired, only a single
wleulation is required, although it must be noted
that this caleulation may be far more complex
than each of the many computations involved in
using the difference equation. This is particularly
true il the observations are correlated, for then
the closed-form solution involves the inversion of
the very large @ matrix, which is guite apt to be
l-conditioned.  OF course, it is assumed that @
is known a priori and the diflicult inversion process
need not be performed in the on-board computer;
that is, the Q" matrix could be precompnted and
gtored. However, if the solution is to be obtained
at a number of points, for instance at each obser-
ration time as in the present problem, it Is scen
that @' is different for each caleulation and a
very lurge storage would be necessary. In this
case, the difference equation form of solution ap-
pears to be the natural approach since the number
of caleulations required is the same for both
methods (i.e., one calculation for each observa-
tion), but the caleulations are much less complex.
This conclusion applies particularly to the case
where correlated observation errors are considered,
However, even with uncorrelated observations the
difference equation solution is apt to be simpler
beeause the closed-form solution always involves
the inversion of a 66 matrix (eq. ('15)), whereas
the difference equations involve inversion of a
matrix which is of order equal only to the number
of measurement components comprising an obser-
vation (see eq. (13)). 1t should be further noted
that if the measurements comprising an observa-
tion are themselves uncorrelated, each measure-
ment could be treated as an independent observa-
tion (even though they occur at the same time);
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the matrix to be inverted is in this case a 1X1,
and the inversion is trivial so that the ultimate in
caleulation simplicity is realized.

A MINIMUM DATA METHOD

Although the trajectory determination tech-
nique presented is optimal, the question naturally
arises us to how muceh better it is than other non-
optimal schemes which may be situpler and there-
fore have an advantage from an implementation
point of view. No definitive answer to the ques-
tion will be attempted here beeause the number of
possible nonoptimal systems is myriad. However,
some idea of the trade-off considerations invelved
can be obtained by a cursory examination of two
alternative schemes. The first of these is a mini-
mum data method wherein determination of the
trajectory is based on two observations, each con-
sisting of three angles. The second (given in the
next seetion) 18 a least squares data smoothing
method deseribed in reference 8.

The two-observation method ean be deseribed
as follows., A measurement is made of the earth-
subtended angle and divection of the vehicle-carth
line at time ¢, which 1s taken to be % hour after
injection to coimecide with the time observations
begin in the optimal system. Then during the sub-
sequent 2-hour period another similar observation
is made.  On the basis of the two observations,
an estimate of the position and velocity of the
vehiele ean be computed from purely geometrieal
relationships if the times ol the observations are
known. The estimation error due to the instru-
mentation noise can also be computed. In fig-
ure 11 this error is plotted as a function of the
time of the second observation for noise magnitude
o,=1 sec are in each angle. The position estima-
tion crror, figure 11, depends only on the second
observation and increases with time, whereas the
velocity estimation error, figure 11, generally
decreases as the spacing inereases as should be
expected.  The slight upturn in the velocity error
curve at the end of the observation period indi-
ates that there 1s a distinet optimum spacing.
For the situation assumed, this spacing is about
0.035 day (0.84 hours). The inercased error for
larger spacing 1s due principally to the rapidly
inereasing error in position determination.,  For
o,=20 sce are the errors in position and velocity
estimation are about five times as great as for the
optimal filter in the interval between 2 and 24

ot
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Frarre 11.---Root-mean-square estimation errors for a
minimum data method of trajectory estimation.

hours after injection. It should be noted that this
error is almost as great as the expected deviation
from the reference trajectory for the assumed
magnitude of injection errors, Thus, under these
conditions, this type of caleulation adds very little
to the knowledge of the trajectory and is not com-
petitive with the optimal svstem.  Of course, since
the two-observation caleulations are so simple, a
digital computer is not required as it is for the
optimal system. Thus, such a technique might
be seriously considered as a standby which could
be used during eertain periods of the flight in case
ol a failure of the computer.

A LEAST SQUARES METHOD

The next method to be considered, taken from
reference 8, is a least squares curve-fitting scheme,
The idea here is to smooth the observations them-
selves (i.e., the measured angles), using a method
of least squares.  After a number of observations
the angles would then be known with greater
accuracy than they would be from any single oh-
servation, and could then be employed to obtain
a navigation fix as in the minimum data method
described above,  When this idea is applied to the
problem of estitmating angles from the data
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obtained in o series of uniformly spaced ob-
servations, the preeision of the angle estimates is
given approximately by the following formula,
taken from reference 8:

a,(d4-1) .

o= L. (23)
vk

where

o standard deviation of the estimation error

g, standard deviation of instrumentation error

d order of polynomial that fits the true angle
time history sufliciently accurately

A number ol observations

From the estimated angles an estimate of the
position of the vehiele can be computed.  When
o, 1% known for each of the three smoothed angle
measurements, the precision of the estimate of
vehiele position can be caleulated veadily il it is
assumed that the estimated angles are independent
random vartables.  This precision is plotted as a
function ol time in figure 11 with ¢, assumed to
equal 1 second for each of the three angles. At
24 hours after injection (the time of the last esti-
maute made by the optimal svstem), the preeision
is seen to be about 1.5 km per second of are. At
this time the optimal svstemn with 20 observations,
a,-=20 see, gives a precision of about 4.8 kni.
Thus, to give the sune precision, the least-squares
method must result in a e, of 3.2 seconds ol are.
I we assume that =1 is adequate to fit the angle
time histories (a higher o gives a poorer estimate),
it is seen from equation (23) that 156 observations
are reguired to achieve the same accuracy as the
optimal system obtains with 20 observations. A
similar ealeulation for ¢,=200 see are shows that
abotit 1300 observations are necessary to mateh
the optimal svstem performance,

A large number ol observations is required with
this technique because the method is not optimal,
in large part beeause it does not make use ol avail-
able statistical mnformation regarding injection
conditions.  The large number of measurements
also implies o close spacing of observation times
which tends to mvalidate the assumption ol inde-
pendent observations.  Additional disadvantages
of the technique are that it involves eertain ap-
proximations that introduce errors the magnitudes
of which are diflicult to determine, and lurther,
that the technique is not very flexible.  Neverthe-
less, the computations required are perhaps simpler
than those of Bayes estimation, although the proc-

essing of so mueh data s not necessarily an easy
task,

An analysis similar to that given above could
be applied to the determination of vehiele veloeity
with results similar to those obtained for position
estimation.
of limited interest here and will not be developed.

The details of such an analysis are

CONCLUDING REMARKS

No attempt has been made here to present the
theory of optimal filtering in a  particularly
sophisticated form.  The idea has been prinmarily
to deseribe the application of the theory in a
manner readily understood by system design
engineers. It is of mterest  that,
unlike many applications of optimization theory,
here the theory i1s actually embodied in the
svstem design rather than simply establishing o
eriterion for the assessment of the performance of
svstems  designed in some other way. Thus,
theoretical optimal performance i1s actually attain-
able (as long as the basie assumptions are not
violated). However, it should be borne in mind
that certain approximations might still be quite

particular

fruitful in simplifving the svstem  design, and
such matters deserve further consideration,

Some of the problems remuining in the practical
design of a system utilizing the theory have
already been mentioned.  These melude:

(1) Design of a digital computer to implement
the computations

(2) Design of an instrumentation system and
observation schedule

(3) Detailed consideration of the true nature of
injection errors and instrumentation errors (includ-
ing hiases)

(4) Tntegration of the system into a complete
guidance system, ineluding such possible operating
modes as abort, lunar orbiting and/or landing,
rendezvous, and re-entry

Although the trajectory determination scheme
has been deseribed here in terms of guidance of a
cirecumlunar vehicle, it is apparvent that the same
scheme is also applieable, perhaps with some
practicul modifications, to guidance problems for
near-enrth satellites and interplanetary vehicles,
[t also is not restricted to on-board appheations,
but could form the basis of an earth-based tracking
syvsten,

Aves Resgarcn CENTER
NATIONAL ABRONAUTICR AND NPACE ADMINISTRATION
Morverr Fienp, Canir., Novo 20, 1961



APPENDIX A

THE EQUATIONS OF MOTION

The equations of motion are derived on the
basis of including the gravitational effects on the
vehicle of the earth (including the sccond har-
monic term of the earth’s obluteness) und a spher-
ical and homogeneous moon and sun.

The coordinate svstem chosen is that of & non-
rotating Curtesian geocentric frame.  The Z axis
lies along the earth’s polar axis, positive to the
north. The X and I axes are in the equatorial
plane with the positive X axis in the direction of
the first point ol Aries and the ¥ axis oriented so
as to produce a right-handed orthogonal svstem,
A diagram of this coordinate system is given in
the accompanying sketch,

z

Earth polar oxis

o Sun
Vehicle (X5, Zs)
(x, vz}
Y
O Moon

(X, Yo, Zo)

Earth
(0,0,0)
Xx Vernal equinox

The equations of motion expressed in the co-
ordinate system deseribed are as follows (see, e.g.,
refl. 9):

to

5»_:_#;j3f [1 +1<:’)(, s f):I

__‘Um()vf )YJJQ __"'711)7@_“& ()'_ )Y\)__p-v)Y}

AT T T Ay T @
= A ay? A
A [1 +J(5'—) (:;—;)/., ]
1 Na re
. Mo (Zi Zm) ._H'"Z’L'__Ii‘,",(iz,,' Z») . &\;Z\ ( i\ 3)

Amli 7'1713 -\xl‘ ]‘.\'3
where
S
PN XY R
r=ANEY 22

Am: \JE\':\;;::)E—T’— ()'_ )'"l".’_“_ (Z*Zm)-’

A=V (NN (Y =Y ) (2= 7))

X2

He=3. 986135 10" m¥/see?
L =4.89820>C 1OY mfsee?
pe=1.3253>10* m#/sec?
w=radius of earth at equator=6.37826 x 10°m
J==1.6246 107

The first, second, and lourth terms on the right
side of each of equations (A1), (A2), and (A3)
represent the gravitational attraction upon the ve-
hicle of an oblate earth (second harmonic only),
a spherical moon, and a sphierical sun, respectively.
The third and fifth terms represent the influence
of the moon and sun upon the earth, or mmy
alternatively be interpreted as accounting for the
principal part of the aceeleration of the earth-
centered coordinate system in inertial space.

17



APPENDIX B

THE LINEAR PERTURBATION EQUATION

The equations of motion, (A1) to (A3), are of
the lorm:

N=/(X,).7)
VoefuX, V. 7)
7= (X V. Z)

(B1)

To linearize these equations, we expand each in a
25 . P P - >
[avlor series about a reference position, X, Yo,
Zp, for example,

ofs o/i

N/l Y p Z 5y V=Xt gy (V)
of\ o, e et .
-+ (Z—Zg)+higher order terms (B2)

o/

and similarly for the ¥ and 7 equations.  Here it
is understood that the partial derivations are
evaluated at the reference position.  If the higher
order terms are dropped (a reasonable approxi-
mation when the difference quantities X — .\, ete,,
are small), the equations are linearin the difference
quantities.

It is convenient to deseribe the state of this
systetn of dynamical equations in terms of the
difference quantities, remembering that X, Y, 7,
N, Yo, Zgarveall functions of time (i.e., the Taylor’s
series expansion is performed at each pointin time,
using a reference trajectory to specify the Ng, Yg,
7x quantities).  Thus, the state is a six vector:

oY
I

S£2

Sy

where

.I']iA\"A\'R h

) (BR)

P A*AR ;fi.i';;J

18

Equations (B1) are then of the form

Cofi o of L of )
S s

. Of, Of Of

.1'3'—:0‘{{, J'1+a‘;2 .1'3—%—0‘% Ly L (B4)
: __afx ) a_f:x . Of:{
Fa=ox oy o

In the so-called standard form, equations (B4)
appear as

:I.',y:.l',; 3
R Y
j:3:.l‘(‘,
.oy of oft
1'44'0‘\17 -'1+o)l; -f3+OZ I3\ (B5)
. ofy of, of»
.r_-,—-,o‘l\, e +O’; .1'3+O‘/Z Iy
L Ofy  Ofy of,
IR URERNVALY
or in short-hand notation
T(t)=F)o(t) (BB6)

where #(0) i a six veetor and F(¢) is a (lime-
varying) 66 matrix defined as follows:

0 0 0 1 0 07
0 0 0O 0 1 0

0 0 0 0 01

oan on o i
F= SV oF o 0 0 0 (B7)
of, ofs O
a./:; D_f:; Q/I$ o0 0

L 2.\ dY oZ
I the partials in /" are evaluated along the refer-
ence trajectory, they are merely functions of time
once this reference has been selected. Il the
reference for which the partials ure evaluated is
the estimated trajectory, then the partials must
be computed as the flight progresses since the
estimate is not known a priori and is subject to
change as each observation is made.



APPENDIX C

RELATIONS BETWEEN SPACE ANGLES AND POSITION

The system under study employs optical on-
board instrumentation capable of measuring the
directions in space ol lines ol sight from the
vehiele to selected celestial bodies.  Within this
restriction there is no attempt made here to opti-
mize the choice of angles to be measured. A par-
ticular plausible set of angles is selected simply to
permit examination of the behavior of the tra-
jectory determination system.  This is necessary
because the relationships between the location of
the vehicle and the angles measured are an in-
tegral part of the svstem. Derivations of these
relations are developed in this appendix for the
chosen set of angles.

Because the observational period studied here
is such that the vehiele is relatively close to the
carth, it is natural to conceive ol an instrumenta-
tion system that involves looking at the carth.
Suelt a system could conceivably provide simul-
taneous measurements ol the direction of the
vehiele-earth line of sight and the subtended earth
angle.  The geometry of this situation is illus-
trated in the accompanying sketeh where the

Aries

farth

(0,0,0] X

direction ol the line of sight is specified by the
angles «, and 8., and the subtended ecarth angle is
2y, The augle 8, is assumed to be measured
clockwise from Aries (the .Y axis), and «, is taken
to be positive if the vehicele is below the equatorial
plane (i.e., Z<70).

There are many possible instrumentation ar-
rangements  that could provide
either directly or indirectly) of «,, 8., and v,, the
fundamental difference being in the way the in-
accuracies in the measurements (i.e., the noise)

measurements

enter the system.  To avoid involvement in the
details of specifying a particular instrumentation
scheme, we simply assume, without any consider-
ations of practicality, that the three angles are
measured independently, with the same kind of
Guussian errors in each angle.  The noise covari-
ance matrix is therefore diagonal,

The equations which relate the angles «,, 8., v,
to vehiele positions are readily derived from the

geometry.  They are:
5 A
a,= —sin ! (ﬁ)
sin”'— Y
; BCED L ‘
3, ' . \ (')
cosH— A
L i (N2 Yy
. n,

where £2,=radius of earth
R= (N2 Y gy

The linear perturbation form of equations (C'1) is
obtained by Taylor’s series expansion about a
reference trajectory in the same manner as de-
scribed for the equations of motion in appendix
A, Thus,

r 3

Mda, Oa, 0,7 h
ocx,

o.X oY o/

o8, 08, 08,

")
oXN oY 07 | (2

3 % - e
5 0v. 07, 97, .
) Loxovoz] U™ )

where éa,, §8,, &v., 1\, 12, und ry are deviations from
the angles and positions associated with the refer-
ence trajectory, and the partials are evaluated
along this trajectory.  The 3303 matrix of partial
derivatives is the [ matrix of the body of the
report and is, of course, time-varving. Explicit
expressions for the partials are obtained by partial
19
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differentiation of equations (C1) and are tabulated
in the following table:

-
Quantity| og Oy
() oX oy

XNZ vz

TR NTeYr | RN NREY?
¥ X

o Xty PRI
. -R.X C—RY
YRR RY L ORWRR

R X Y22

12, —radius of carth

Oq

VA
zi— R
RN Y2

0

—RZ

i

AND RPACE

ADMINISTRATION

It may be noted purenthetically that the three
angles a,, 8., v., are sufficient for a position fix.
Although the computation of such a fix is not
necessary in the data reduction method employed
in this report, it is used in some navigation tech-

niques.

Equations for calculating the fix are

obtained by inverting equations ((11):

X=

Y=

/=

12, cos a, cos B, )
sin v,

I, cos a, sin B,
sin 7y,

R, sin a,

- ((3)

sin vy, J



APPENDIX D

SIMPLIFICATION OF THE ESTIMATION EQUATIONS FOR UNCORRELATED INSTRUMENT ERRORS

In the situation of uncorrelated instrument
errors, it is readily shown that the estimate n s
not required. Suppose the estimate 1*(f,,) is
represented in partitioned form

A Al
£ (f/;~1)
()
The operation &*(t,;¢,.)c*(t_,) indicated in
equation (9) can thus be represented in the form

}*(tk—l>:

(D1)

¢ 0 ¥ b

: = (D2)
0 &, || 4] o
where arguments have been omitted for simplicity.
Now, since for uncorrelated instrument errors
D, 42 =0, 1t 18 apparent that the updated
estimate of # is simply zero and there is no point.
in implementing this portion of the estimation
caleulutions.

The same sort of analysis applies to the com-
putation of the ”* and A* matrices. If the
matrix in braces in equation (11) is denoted as
P*this equation ean be rewritten

P*=dH ST ()* (D3)

where /2% can be written in the partitioned form

[[)\ I)XHJ
[)*f:

I).\?H [)H
The subseripts s and » reler, respectively, to errors
in the estimate of x and n, and s» refers to correla-
tion between these errors. Note that any covari-
ance matrix, such as ’*, is syminetric, and there-
fore the off-dingonal submatrices can be expressed

as transposes of each other. KEquation (D3) ean
then be written

® 0 Py PLre” o 0 0
] — _{_
0 &L Pr.Jlo  er 0

& " b, BT jl
q)n[)x-l;zrbT ¢11[)/1¢3,+(2,

(D4)

(D5)

Obviously, il ®,=0, this reduces to

YIRS n]
=
0 74

The parts of I°* which refer to the errors in esti-
mating & and » are thus uncorrelated, and may be
computed separately. The matrix ¢’ is computed
from equation (6), where it is seen that for uncor-
related errors the lower limit of the integral can
be replaced by —e. Thus, in this case ¢ is a
funcetion only of ¢, and 1s designated §(f). Since
(¢) may be assumed to be known a priori this
computation may he omitied.

The computation can be further simplified when
the computation of I, is examined in detail. In
partitioned form, the operation MP* U™ can be
written

r 0rir
MP*MT={1T D) j| ]
0 QJLD"

—[IPII7+DQDT|= B

(D6)

(D7)
where

P=ol o7 (D3)

The operation to compute ’* (the matrix in
braces in eq. (11)) is then:

PP AT
r ”] PHTBIP
Lo od Lepms-nr

From a comparison of equations (ID4) and (D9),

it Is clear that the submatrix /72, 18 computed by

the relation P—PITE-YI’. Substituting this

into equation (D8) then gives the recursion rela-

tion for 7’ as:

Pt )=®(ter; L)L)

— D) ()BT HGDPU) DT (Hen; 1)

(D10)

1’117'1:—'1)(3}
ODTB-'DY
(D9)

where
B={H(t )P I (8) 4 Q1) ]

Here u further simplification has been introduced;
beeause @ appears in the equations only in the
21
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form DEDY, no generality is lost by redefinmg ¢
to be DQIT.
The A* matrix may be written

) T ) 72—
weparpo LT _:lB-’_ PHE
0o ol Lp QDB
(D11)

Only the upper part of this has to do with inere-
menting the estimate of x. Designating this por-
tion of A™* as A, we then have

K -PHTB! (D12)

AERONAUTICS AND SPACE ADMINISTRATION

Following the same procedure, the operation
Me*3* in equation (9) is reduced to /9%,

With the simplifications given above, the opti-
nid estimation equations hecome

) =D (Lt NI )R )y
— L), 1, 1)}(“— 1) |

K@) =LA @)t P TTT(1) + Q017!
(D14)

(D13)

I)(f;; i) *‘b(le? fk)“’(fk)

=K PI)NP (H s 1) (D15



APPENDIX E

COMPUTATION OF THE TRANSITION MATRIX

All solutions of the linear differential equation
(B6) can be written in the form

where »(,) 1s a vector initial condition at time
t,, r(t) is the vector state variable at time ¢, and
®(t; t,) I1s the transition mairix which relates
the two. As wuas shown in the main body of this
report, we are prineipally interested in the transi-
tion from one observation to the next. Since the
transition matrix depends on the particular tra-
jectory the vehiele is on, and since the observation
times are arbitrary, it is desirable that & be con-
tinuously ealeulated in the vehiele.

It is seen in equation (K1) that if an initial
condition of unity is put on z; at time ¢, with all
other components of « set equal to zero, then the
ensuing time history of z is the first column of the
®(t; t,) matrix. This is demonstrated as follows.
I we define

Cen L2 R 9015-
LY Pa2
b(t;t,)= (E2)
a1 L2

where each element ¢;; is a function of ¢ and ¢,
then we see that

( (27 ) (17
P21 0
Pst 0 )
< F=0(t 1)< s (E3)
Pl 0
©s51 0
\. ¥s1 J L0

This is equivalent to introducing the proper
initial conditions into the perturbation equations
and integrating numerically, a procedure readily
implemented by means of a digital computer. If
this is done simultancously for six sets of per-
turbation equations, with each set having a unit
initinl condition on one of the components of z
and zero on all the others, all six columns of the
transition matrix ean be generated continuously.
The transition matrix from the latest observation
is always available if the initial conditions are
reset after each observation,



APPENDIX F

RECURSION RELATIONS FOR A BAYES ESTIMATION PROCEDURE

To formulate Baves estimation equations, we
begin with the same ussumptions emploved in the
development of the optimal filter theory. These
are:

(1) The equations ol motion are linearized with
respect to a reference trajectory, and the state and
observables are deseribed in terms of deviations
from the reference. Thus, the state is given at
time ¢, by

r==o.0, (F1)

where &, 1s the 66 transition matrix from time
t, to tune f,. The set of deviation observables
at time {, is given by

==, (F2)
(" 9y ) NIEA 0
Ya 0 H.P,
I b=
\ Wi J | 0

Ity and n;are j veetors, and o, is a 6 vector, the
I are j 6 matrices. When Gaussian injection
errors and noise are assumed, with zero means,
the statistical description of the random vectors
. and nois given by the covariance matrices

cov L, 2,11,
cov [n,n]—=@

If the n; are uncorrelated (i.e., observations un-

correlated), 2 may be partitioned in the form
24

where 71, is the matrix of partial derivatives of the
obscervables with respeet to the state variables at
time f.

(2) An observation is made at time ¢, with
additive error uncorrelated with errors at succes-
sive observation times:

Ye=Hpr 41, (F3)
Here, if 9, 15 a 7 veetor (1.e., 7 components in the
observation) and r; is a 6 veetor, I, is a jX6
matrix.

A series of £ observations of the type deseribed
might then be represented in the form

y=Idr,4 n (F4)

which may be partitioned

0 7] t It A
o
R D (F5)

[IA-‘I),;J \. /t; J
o 0. . i 07

0,

(=

0 Q)

Suppose it 18 desired to estimate the injection
state, z,, from the series of observations, 3. When
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the problem is considered probabilistically, it is
evident that all the information about the initial
condition, z,, conveyed by the observations, ¥, is
contained in the so-called a posteriori probability
density function, written as p(x,|y). Now, from
decision theory it can be shown (e.g., ref. 5) that
to minimize a mean-squarc-error loss function
(or more correctly, a quadratic loss function in
the case of a multidimensional estimation prob-
lem) the estimate ol x,, which may be called %,
is the mean of the a posteriori random variable
(2,'y). This is called a Bayes estimate in decision
theory.

To obtain an analytical expression for p(x.ly),
Bayes theorem is employed:

pla =140 1) (1)
)

Since the noise and injection errors are assumed
Gaussian and independent, the density Tunctions
in equation (F6) can be written (c.g., sce ref. 7,
p- 13):

p(y a,) = plwy==p(y—1IDr,)

1 L,
[k o P T W

f‘r,'f‘(b"'ll"‘)Q"(y;llﬁru)] (F7)

1 1 . .
]I(J',,) ::i(()n_)uu) Hi CXp [_5 -I‘ull)u—‘-’ba] (h‘N,)
1 ] [ Do
P oy e 5P T @Y
(Ir9)
where

P=cov [[I®r, [Idr|=1100 211"
j=number of measurements in an observation
k=number ol observations

Thus, the a posteriori density [unction is

O Q41 | S
Z’(-”u}.’/)::(z;);zgji SEITRE exp |:—~)’ T Soar

—‘1) (= s Iy~ (y— 1)

+.§zz"<(z+1‘>—lz/] (F10)

which, after some manipulation, becomes

'O+T 12 1, .
pLs|y) ZVT);)%JI 171‘@ exp [*é (rd

—g/"Q“H(bA)A\“(.r,,uA(I)"[ITQ“I/)] (F11)

where

A= (P 4eTHTQ D) !
Clearly, the wean of the random variable (r]y) s

A v v
Z=ARTHTQ Yy (F12)
Also. the covariance matrix of the errorin estimate,
L,=0,— Ty 15 A

If the estimate of the state at time ¢ is desired,
this is given by

=@ ADTHTQ 'y (F13)

where @, is the 6X6 transition matrix from
t, to Ik
estimate 18

The covariance matrix of the error in

RWESL JRT (IF14)

These explicit fornlas for the estimate 7y and
{he statistics of the error in estimate involve the
multiplication and inversion of matrices of rather
high order when there are a large number ol ob-
Sonte simplification in this regard is
possible under the assumption of imdependent ob-
gervations if equations (F13) and (F14) are written
in terms of the partitioned parts of @, 77, and ®:

servations,

~ k Nk
b=, <]’,,"‘4—2%‘1[7'(};‘”,4)1) SRITQ
(F15)

3

A=, (1 LCSSOTITIQ ) b

N i=1

(F16)

Now il it is supposed that the estimation ealeula-
{ions are to be performed on a step-hy=step basis

that is, the state estimate is “improved” at the
time each new observation is obtained it is elear
that the previous estimate is always available.
For instance, at time ¢, when the kth observation
is made, the estimate %, ol the state at £, has
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alveady been computed on the basis of the first
£—1 observations:

. k-1 -1
B (2, 1+}_:l¢z'11;"q);111,¢,.)

k-1
gllbi"lli"(}{ Y (F17)

Also, the estimate of . based on k—1 observa-
tions is obtained simply by updating #,_, to time
[;\-:

s k=1 -1
bt b=, (1, RS SLH/H lll,rp,)

\

k=1
2> RTHIQ My, (F18)
=1

where &.®,", is simply the transition matrix
from time #,., to f,. Next, it is seen that equa-
tions (F15) and (F18) may be rewritten as:

k k
(Po+25000, 1L, ) a5 =307 HTQ:
. i=1 g i=1
(F19)

k-1 k-1
(P +Sermrg 111,4:,) Bt b= S GITTTQ: Yy,
N i=1 g i=1
(F20)

Subtracting equation (F20) from (F19) gives

’ k A A
(P43 OIHIQ T, ) @8 by
i=1 .

FOLHIQ H ;1 iy =TT, My,
or
T= ey ALHTTQ G Tt )
(IF21)

It is seen that this equation would be identical
to equation (12) in the text, developed {rom filter
theory, if

NI =K (t)=D (6 IIT(ITP (1) TIT+(,] !

That this relationship is t{rue will be proved here
in two steps: First, it will be shown that A, the
covariance matrix of Bayes estimation errors, is
equal to the P’ (t;) covariance matrix; this is proved
by showing that A, and P’ () satisfy the same
recursion equations.  Second, it is necessary to
prove the matrix relationship

AITQ = AJTTT T ATIF 4 Q)

where A=A+ (A4);, and (AA), is the change
in the covariunce matrix ol estimation errors
which occeurs when the observation is made.  (In
other words, two covariance matrices at time #
are considered: A, bused on k—1 observations, and
A, based on k observations.)

To develop a recursion formula for AL, it is
noted that the change in this matrix due to the
kth observation is given by

i son[(r5v)

v f—1 -1
~(ro3w) er @)
1

where
A=l ) AL (DD, )T (F23)
is the covariance matrix before the information
from the kth observation has been included, and
v, = oV o7 H 8, Equation (F22) can be

rearranged to give

(‘1’,7 ! +§/,j' \If) b HAA) D) (‘/ﬂ; ‘+k21:‘:\111‘) ——,

(700 b, W) b, (AALD] (BT AL (b )= — ¥,

(.\A)kjv' *(I);{ (‘b[,p\;; xl{t’k, 1 ’{‘I’;\) - ]‘I/A-((I);,l IA\:\._,(I)IZ.::) ]‘pl\l

= (TR AL A b IO L) T QTS BT AL By ) !

e NlT PO IO T A,

(F24)
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Now the matrix identity

Qi =11 FQ LT 400
AT+ Q0 T,
— (17O T A+ DITE AT ATTT Q) 7 T,
or
(TG T+ D 0,
TN 40 ', (F25)

is substituted into equation (F24) to obtain
(A.\)A; — A\;\-[] Z(IIAA;\I[ ;Tﬁ‘* (l)/“) 711[;“\);

Thus,

A= A= AT TUTATTE Q) ~ LA, (120)

The recursion formulas (F23) and (F26) for A, are
seen to be identical to the equivalent ¢ v
(15) and (16), for the P(t,) matrix, Therefore,
P(ty) 1s exactly the same a8 Ag.

The second portion of the proof is developed as
follows: Expression (F26) is substituted into the
weighting funetion ATTTO, with the result that
ANTTTQ =8 — AT T AT Q) T A Q!

= AT — (AT
Q) LAJLTQ
= AJIP VAT E Q) L AT
Q) Qi —(TTA I
4 Q) L AJLIQ
=AJIE | TTATIF Q0 Y T ATTIQ T
I AJTEQ M)
=ALE L AT+ Q) (F27)

This completes the proof.  Thus, the Bayes esti-
mate is seen to be identical to the estimate obtained
by the filter theory approach.
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